
Acme Script Widgets are
Copyright © 1994-96 Wayne K. Walrath & Acme Technologies. All rights reserved.

Acme Script Widgets is a trademark of Acme Technologies.

Acme Script Widgets are a collection of AppleScript™
Scripting Additions which provide powerful text and list
manipulation capabilities. AppleScripts will execute from
2 to 20 times faster and require fewer lines of code when
using the Widgets.

Acme Script Widgets are provided on a 30 day evaluation
license. The thirty day period begins from the day you
first install them. After the evaluation period has
expired, you are required to either purchase the
appropriate license, or remove them from all computers
where they are installed.

Support is available to all ASW customers, as well as
people using the Widgets during the evaluation period.
Send questions to support@acmetech.com.
You'll find the Acme Technologies Web site at
<http://www.acmetech.com>.

This software may not be uploaded to any online
service without prior written permission.

AppleScript, AppleEvents, AppleShare and Macintosh are trademarks of Apple Computer, Inc. FileMaker Pro, and
HyperCard are registered trademarks of Claris Corporation. 4th Dimension is a registered trademark of ACI/ACI US,
Inc. WebStar is a trademark of StarNine Technologies, Inc. All other company names or trademarks are registered
trademarks of their respective owners.

http://www.gz.com/acme/

Ordering Information

Acme Script Widgets and all Acme Technologies products can be
ordered directly from Acme Technologies at:

tel. +1 (203) 969-1335
fax +1 (203) 969-1336
197 Seaside Avenue
Stamford, CT 06902
USA

We accept cash or check in US funds, purchase orders from qualified
institutions, as well as Visa/MC/AmEx/Discover credit cards.

If you have access to the world wide web, you can place your order
online at <http://www.acmetech.com>.

Licenses Fees

Single User License (one CPU) US$ 29.00

Site License

(unlimited copies within same organization in a

100 mile (160 kilometer) radius)

US$ 200.00

World-Wide License

(unlimited copies within organization)

US$ 600.00

For OEM sales, solution provider redistribution or other arrangements,
call us or send e-mail to sales@acmetech.com.

Acme Script Widgets 2.5.1 2 1 October 1995

Why Scripting Additions?

Scripting Additions (also known as osaxen or osax in the singular because
‘osax’ is the file type for Scripting Additions) are compiled C/C++ code
resources which execute many times faster than pure AppleScript which is
more or less an interpreted language. AppleScript is a general purpose,
high-level language designed to control and tie together other applications.
By supporting Apple events, other applications provide the powerful,
special purpose features like graphics manipulation, or communications and
database services. However, there are many occasions where it is quicker
and simpler to just manipulate basic data from within an AppleScript and
not have to request the services from another application. To support that,
AppleScript can be extended with Scripting Additions.

The Acme Script Widgets were created to handle such common tasks as
searching for text strings, or manipulating AppleScript list variables.

Ninety percent of the functionality the Script Widgets provide can be
achieved with pure AppleScript statements alone, and if the amount of data
you are working with is very small, this works just fine and nearly as fast.
But even casual script writers will very soon reach the point where they
want more speed out of the scripts they write, and Acme Script Widgets are
guaranteed to provide that along with reducing the number of AppleScript
statements required.

Here’s a simple example which illustrates the difference using the Script
Widgets can make for a typical operation. Given a line of text, the goal is to
remove all spaces and periods from both ends of the text.

Acme Script Widgets 2.5.1 3 1 October 1995

set theString to ".......On a clear day you can see forever. "

set currentChar to length of theString
-- remove periods and spaces from the end of the string first
repeat while ((character currentChar of theString = " ") or ¬

(character currentChar of theString = " ")) ¬
and (currentChar > 0)
set currentChar to (currentChar - 1)

end repeat
set theString to characters 1 thru currentChar of theString as text

set currentChar to 1
-- now remove periods and spaces from the beginning of the string
repeat while ((character currentChar of theString = ".") or ¬

(character currentChar of theString = ".")) ¬
and (currentChar < length of theString)

set currentChar to (currentChar + 1)
end repeat
set theString to characters currentChar thru -1 of theString as text

And now the same task but with the Acme Script Widget Trim
command

-- reset the data string for the next example
set theString to ".......On a clear day you can see forever. "

-- now do the same using the Trim command
set theString to trim {".", " "} off theString from both sides

Both of these AppleScript code snippets were timed using an osax called
“the ticks” (from Jon’s Commands) which returns the Macintosh’s current
tick count (there are sixty ticks to a second). The AppleScript-only solution
ran in about 25 ticks, but the Trim version only needed about 5 ticks
(clocked on a PPC 6100/66 in Script Debugger, your times will likely vary,
but the relative difference should be similar). Even for this relatively short
string of characters, Trim accomplished the task in fifth of the time it took to
do with just AppleScript statements. And the AppleScript-only solution
required ten lines of code to do what Trim did in only one.

Using the Widgets almost always results in fewer lines of code, however
the actual performance will vary depending on many factors. Often times
the difference is much more dramatic. On the next page are a few of the
comments Acme Script Widget users have sent to us.

Acme Script Widgets 2.5.1 4 1 October 1995

Praise for Acme Script Widgets

From: Dennis L. Whiteman, 72740,3146
To: Wayne Walrath, 73243,3303
Date: 24 Oct, 1994, 10:14
RE: Tokenize Scripting Addition: Final Version

I set up a droplet and database over the weekend that lets me drop e-mail
saved from CompuServe and eWorld (either as text files or clippings) into a
Filemaker correspondance database. I used both Tokenize and Join Lists and
they worked great. Probably saved me over 50 lines of code each. Keep up the
good work!

Dennis L. Whiteman
THE ULTIMATE FREELANCER

From: John Craig, 74660,2313
To: Wayne Walrath, 70233,3151
Date: Wed, 12 Oct, 1994, 17:52
RE: TokenizeII OSAX

Thank you for sending me the Scripting addition!

I've just ripped out about 100 lines of code that painfully parsed some data
records from a 4th Dimension server application and sent them to Excel and
Delta Graph. The whole process has been cut to about 25% of the original time
it took to parse the data (1 hour to 13 minutes!).

Thanks again!

John Craig

[...] You should, however, check out Wayne Walrath's ACME script widgets
which are fantastic. The script below uses his tokenize osax and is much
shorter and never messes with the AS delimiters.

Andrew Olson
olson_andrew@bcgmac.bcgny.com

Acme Script Widgets 2.5.1 5 1 October 1995

Praise for Acme Script Widgets

I've come across a lot of scripting additions, and Tokenize is one of the
most genuinely useful. It was very insightful of you to capitalize upon
the current limitations of AppleScript's text item delimiters. [...]

Regards,
David Jokinen
Ground Zero Software (eWorld Shortcut = ground zero)

Date: Sat, 3 Dec 1994 08:11:15 -0600
Sender: <MACSCRPT@DARTCMS1.DARTMOUTH.EDU>
From: Steve Alex <steve_alex@AIDT.EDU>
Subject: Thank you ACME Script Widgets!

[...] "Tokenize" allowed us to take a routine that was about 150 lines
and get it down to about 30. I could not pass up that kind of speed and
size savings, so I put a period in front of it (.tokenize -- we use the
period to distinguish "third party" OSAX) and threw it in the
scripting additions folder. I said "Thank you Wayne." to myself and
went on solving the worlds problems.

[...] Now comes "Offset In List" (part of ACME Script Widgets 1.0) and
he causes me to chunk a neat recursive script object I spend a couple days
writing that found the offset of a string in a list of strings. What's
worse is that he solved some problems I don't even thing he realized he
solved! I just glanced at the read me, opened an example, said "Um, lets
try this" [...]

Steve Alex (steve_alex@aidt.edu)

Acme Script Widgets 2.5.1 6 1 October 1995

Acme Script Widgets Overview
Package contents and file locations:

/ACME Script Widgets 2.5
The core scripting additions. Install in your Scripting Additions folder,

inside the Extensions folder. <Contents >

/Register (ACME SW)
An application for purchasing the software license(s).

/Others.../ACME parse args/
Scripting Additions for writing WebSTAR CGIs. These commands
parse the post_args and search_args in a CGI script application.

/Others.../Balloon Help/
Scripting Addition for turning balloon help on or off, or determining
the current state (on or off).

/Others.../Mouse/
Get mouse coordinates.

/Others.../Mama's Little Helper/
This is an unsupported experimental Scripting Addition for use
in writing WebSTAR CGIs.

/Demo Scripts/
Scripts which demonstrate all the commands provided by the core
Scripting Additions (those contained in the ACME Script Widgets 2.5
file).

/Documentation/
User guide.

Acme Script Widgets 2.5.1 7 1 October 1995

QuickQuide to Acme Script Widgets

What follows is a quick guide to each of the main commands. The commands
are explained in more detail later in the document, but one of the best ways to
learn what each function does is to look at the corresponding demo
AppleScript located in the “Demo Scripts” folder, and to open the dictionary
for the Scripting Additions from within your script editor.

Tokenize Similar to working with AppleScript™’s Text Item Delimiters,
but much more powerful. Pulls “tokens” out of text strings based
on any number of separators you provide.

Join List The reverse of Tokenize. Build text strings from lists of element
inserting any number of separators between the list items.

Acme Replace Search for text strings and replace them with other strings.

Offsets of A searching function which returns the offsets into a text string
of another string.

Offset in List Quickly search through a list for a string, returning the index
where it was found.

Trim Remove characters or strings from either end of a block of text.
Supports AppleScript’s “ignoring” keyword so that a list of
ignored patterns can be specified while trimming the text.

Acme Sort Sort a list of items or a list of lists into ascending or descending
order.

Combine Lists Useful for FileMaker Pro scripters and anyone who has to
manipulate nested lists. Given a list of lists, it regroups the
items in the inner lists according to their indexes.

Acme Parse Args WebSTAR CGI writers take note! This command parses all the
input arguments WebSTAR sends to an AppleScript CGI or
ACGI. Convert %XX encodings, split label/value pairs out, etc.

Acme Lookup Field a complement to Acme Parse Args, let’s you quickly locate any
HTML form field value after parsing the input data with Acme
Parse Args.

Acme Script Widgets 2.5.1 8 1 October 1995

ACME Script Widgets Change
History

The ACME Script Widgets are continually being updated and expanded. There
were many significant changes and one or two bug fixes between the two
public releases (1.0 and 2.0), and most of these are documented below. Version
2.5 adds some new commands and implements some users’ requests.

ACME Replace: (formerly called Replace)
Changed the terminology of the osax to reduce the chance of collisions in the terminology space,
since many applications define the replace command. Implemented case sensitivity. NOTE:
Using the case insensitive option causes Replace to run from a third to half again as long as when
it isn't specified, and the memory usage nearly doubles. So don't use this option if you do not need
it. Due to the increased memory demands, the osax attempts to allocate space in temporary
memory first if it is available, and if not, then attempts to get enough in the local Heap zone.

Offsets Of:
Removed 255 char limit on size of search string. The next version will support passing a list of
strings to tokenize instead of having to do it one at a time, and will remove the 255 character
limit on the size of delimiter items.

Offset In List:
Totally rewrote the association lists demo and broke it out into its own script. The Association
List is now a script object with methods for all the common operations. You can load it into your
scripts as a property and get flexible association lists effortlessly.

Mouse:
New addition to satisfy a user's request. Donald Olsen was the first to create this command I
believe, and this version doesn't do anything that his doesn't.

Combine Lists:
New to version 2.0. Useful for working lists of records and repeating fields from FileMaker Pro.

Trim:
New to version 2.0. Trims any number of strings or characters off either end of the target strings,
with the option of ignoring any number of patterns. This is going to be one of the hot-ones!!

Tokenize:
Version 1.2 was rewritten to return null tokens. This makes the behavior exactly the same as
using AppleScript’s text item delimiters property, and means that running a string first through
Tokenize, then the output through Join List will produce the original input string exactly. If you
were using a version prior to 1.2 you’ll need to use the optional parameter “null tokens false” in
order to get exactly the same behavior in your scripts as with 1.1.

Acme Sort:
New in version 2.5.

Acme Parse Args/Acme Lookup Field :
New in version 2.5.

Acme Script Widgets 2.5.1 9 1 October 1995

Installation

The Scripting Additions must be copied to the Scripting Additions folder which resides
inside the Extensions folder of the System folder on English language versions of the
Macintosh operating system. For non-English versions, please refer to the documentation
which came with your Macintosh if you are unsure where they belong.

Installing ACME Script Widgets:

The file ACME Script Widgets 2.5 contains all of the core Widgets. Other special purpose
Widgets are provided in separate files so they only need to be installed if required. As a
general rule, you should not let your Scripting Additions folder fill up with many commands
which you almost never use because it takes longer for your scripts to compile. The
difference is not extreme, so don’t remove commands which you do use on a semi-regular
basis, but it is a good idea to review which commands are in that folder from time to time
and move unused additions to a different location until you need them again. You’ll certainly
want to keep the Acme Script Widgets file in there at all times since they are useful for so
many purposes!

Acme Script Widgets 2.5.1 10 1 October 1995

ACME Replace
ACME Replace is a general purpose search and replace tool for AppleScript™.
You can specify one or more strings to search for in one or more target strings,
and each occurrence will be replaced by the specified replacement text. Replace
has been renamed to ACME Replace to avoid terminology conflicts with other
Scripting Additions and applications.

USAGE:

ACME replace: replaces occurrences of a string with something else.

ACME replace anything -- string or list of strings to search for.
in anything -- the string or list of strings to search in.
with string -- the replace string.
[all occurrences boolean] -- replace all occurrences? (default=TRUE)
[case sensitive/insensitive] -- Consider case? (Default is sensitive.)

Result: anything -- original text item(s) with replacements.

There are no limits on the size of the parameters (other than available
memory), and anything that AppleScript™ can coerce to a string is legal (e.g.,
integers, floats, etc.).

If you pass a list of strings to search for, they are replaced one at a time in the
order they are passed. If you specify that only the first occurrence should be
replaced, each one of the search strings will be replaced once. This might be
useful if you wanted to replace the first X number of a certain string. For
example:

ACME replace {1, 1, 1} in "12121212" with "_" without all occurrences

=> "_2_2_212"

Three of the ones (1) were replaced with "_", and the rest left untouched.

NOTE: Using the case insensitive option causes Replace to run slower than
when it isn't specified, and the memory usage nearly doubles. So don't use
this option if you do not need it.

Acme Script Widgets 2.5.1 11 1 October 1995

Acme Replace (cont.)

NOTE 2 (important!): avoid specifying ‘all occurrences true’ as an option when
using Acme replace. You never need to specify this since the default behavior
is to replace all occurrences (i.e., true), but more importantly, your script will
not recompile properly. The problem lies in the way AppleScript converts
boolean parameters to “with / without” syntax, and due to terminology
conflicts ‘with all occurrences’ does not properly compile.

Very Important! Acme replace does not change the text in a variable. In other
words, the following lines of AppleScript will not change the value stored in
myVar:

set myVar to “555-1212”
Acme replace “555” in myVar with “*”

AppleScript never makes “in place” changes to variables like this. You must
set a variable to a new value:

set myVar to Acme replace “555” in myVar with “*”

now myVar has been changed. This is one of the biggest stumbling blocks for
first time users of Acme replace.

Acme Script Widgets 2.5.1 12 1 October 1995

Change Case
Change Case transforms the case of the text passed to it in a variety of ways.
This Scripting Addition is most likely ONLY useful for working with English
language text, since other languages have their own rules for capitalization.

USAGE:

change case: changes the case of (Roman) text.

change case
of anything -- text to modify. (string or list)
[to upper/lower/title case/sentence case/toggle case/who cares]

Result: anything -- original text with case changed.

The upper and lower case transforms do as their name implies.
Title case makes the first alpha character after a non-alpha character upper
case.

Sentence case searches for the first alpha character in the string and capitalizes
it, then continues on searching for one of /! / . / ? / and capitalizes the next
alpha character after seeing one of the punctuation marks (all other characters
are left untouched).

Toggle just switches the case of each character from whatever it was.

The "who cares" option was added mostly for fun (well, totally for fun) and
randomly changes the case of each letter (if anyone finds a use for this option
other than creating electronic ransom notes, please let me know...).

Acme Script Widgets 2.5.1 13 1 October 1995

Combine Lists
Combine Lists reorganizes the items in sublists, grouping the Nth item from
each of the inner lists together into a new list. For instance, the list {{1,2},{a,b}}
becomes {{1,a},{2,b}} after processing. This Widget is quite handy to have
around when scripting FileMaker Pro. FileMaker Pro returns multiple records
as a list of lists, where each inner list contains all the fields for a single record.
Combine Lists will reorganize the records so that all data from each field is
grouped together; in other words, all the values for the first field are together
in one list, all the values for the second field in another, etc. Combine Lists
also has other applications outside of working with FileMaker Pro records.

USAGE:

combine lists: Groups the Nth item from each sublist together.
combine lists list -- List of lists.
Result: list -- Returns list of lists with items reorganized.

given the following list (which could represent three records from a FileMaker
Pro database with fields: name, age, and house address):

{ {“Jon”, 10, “10 Main St.”}, {“Mary”, 20, “301 Washington Ave.”}, {“Sue”, 15,
“100 South Water St.”} }

Combine Lists returns:

{ { “Jon”, “Mary”, “Sue” }, {10,20,15 }, {“10 Main St.”,“301 Washington
Ave.”,“100 South Water St.” } }

The Nth item from each sublist is grouped together into a new sublist.

Running the output back through Combine Lists a second time will produce
the original list. Combine Lists requires that all sublists have the same number
of elements or it returns an error.

Acme Script Widgets 2.5.1 14 1 October 1995

Join List
Join List forms a string from a list of items, inserting delimiters (in a repeating
fashion if their are more than one) between the strings. Join list is the reverse
of the Tokenize operation.

USAGE:

join list: form string from list items with the delimiters inserted in between.

join list list -- list of text items to join.
with delimiters list -- list of delimiter items.

Result: string -- Returns the joined list as a string.

The first parameter is a list of zero or more strings to be joined into a string. If
no delimiters are specified, all items from the list will be concatenated together
back to back. There is no limit on the size of the items other than available
memory.

The second parameter specifies one or more strings to insert between the
joined items.

Delimiters are inserted between items of the first list sequentially; when the
end of the delimiter list is reached, the Scripting Addition begins again with
the first delimiter (they are inserted in a rotating fashion).

EXAMPLES:

join list {"Join", "List", "Ver1.0"} with delimiters {space}
=> "Join List Ver1.0"

The _space_ character is repeatedly inserted between the items in the first list.
Here’s a more complex example:

set jList to {"One", "Two", "Three", "Four", "Five"}
set dList to {"$", "#"}
join list jList with delimiters dList

=> "One$Two#Three$Four#Five"

The "$" is inserted between the first two items and the "#" between the second
and third items, then because the end of the delimiter list was reached, it starts
over at the beginning of the delimiters again with "$", continuing on in this
manner until all of the strings in jList have been added.

Acme Script Widgets 2.5.1 15 1 October 1995

 If an empty list of delimiters is specified ({}), the command behaves exactly as if
you had used AppleScript™ to coerce the list of strings to a single string.

set jList to {"One", "Two", "Three", "Four", "Five"}
join list jList with delimiters {}

=> "OneTwoThreeFourFive"

If the list of strings to be joined contains only a single element, join list returns
just that element with none of the tokens appended.

join list "one" with delimiters {"&", "*"}
=> "one"

If you want any of the delimiters on the front or end of the returned string,
use AppleScript's built-in capabilities for this.

set jList to {"One", "Two", "Three", "Four"}
set myString to "|" & (join list jList with delimiters "|") & "|"

=> "|One|Two|Three|Four|"

Acme Script Widgets 2.5.1 16 1 October 1995

Offset In List

Offset In List searches through a list of items for a string. It searches for the
pattern in each item of the list, or optionally only even or odd numbered
items, and there are options for performing exact match and case sensitive
searches.

USAGE:

offset in list: search list items, returning found string’s index or next item.

offset in list list -- list of items to search.
of string -- the search string.
[returning next item boolean] -- (index returned by default)
[searching even items/odd items/all items] -- Default: check every item.
[case sensitive/insensitive] -- ignore case? (Default: case is significant.)
[exact match boolean] -- whole word matching only? (Default = true.)

Result: anything -- item number of target, or (optionally) the next item after the
target.

Considering the parameters in order, here's what they are for:

The direct parameter <list> is the list of items to search through.

<string> is the target to search for.

Returning... determines whether you want the item number where the target
is found to be returned, or instead the next item after the item where target is
found. Returning the offset is the default. The intended use for this option is
in working with association lists (poor-man's records), where you have <key,
value> pairs in a list (see the demo Association lists AppleScript in the Demo
Scripts folder).

Searching ... determines whether every item is searched or only even or odd
items. If you are working with <key, value> pairs, you would only want to
search odd items to avoid finding find the target in a value item instead of in a
key item. Default is to search every item.

Case ... determines whether case is considered in the search. Sensitive is
default.

Exact match... if this is set to true (default) the match must be exact (however,
using the _case_ option modifies this behavior), if set to false, it will look for
substring matches.

Acme Script Widgets 2.5.1 17 1 October 1995

Offset In List (cont.)

 The primary use for Offset In List is to easily work with association lists.
Association lists are key/value pairs which function more or less like
AppleScript™ records. With Offset In List, you can store key/value pairs in a
regular AppleScript™ list then use Offset In List to search the keys and return
the value for a matched key. Consider the following contrived example of a
list of names and phone numbers.

set people to {"Stephan", "455-1234", "Renee", "455-4444", "Laura", "433-2345"}

When we want to lookup a person's number, we search the keys in the list
(the names). Notice that the keys are the odd numbered items of the list: 1, 3,
and 5. Here's how to do this with Offset In List:

offset in list people of "renee" case insensitive searching odd items with returning next
item

This statement would locate the key "Renee", and return the next item in the
list which is "455-4444". We tell Offset In List to search only odd numbered
items, and to ignore the case of the key.

It's a little more elegant to use AppleScript's records for this task, but
unfortunately, with AppleScript™ you have to define the record and labels at
the script's compile time. Using Offset In List, you don't need to.

An entire Association List script object has been provided in the demos. It
contains operations for adding, deleting, and looking up data, plus several
more.

Acme Script Widgets 2.5.1 18 1 October 1995

Offsets Of
Offsets Of searches through a string or list of strings for a search pattern and
returns a list of offsets (indexes into the string) where the string was found.

USAGE:

offsets of: returns a list of offsets of one string in another.

offsets of string -- Search string.
in anything -- string or list of strings to search.
[case sensitive/insensitive] -- defaults to case sensitive.

Result: list -- list of offsets where search string was found.

If the case parameter is not specified it defaults to sensitive; that is, case is
significant, so "and" is not the same as "AND".

If you pass a single string to search in, the result is a list of the offsets, or an
empty list if no matches were found. If you pass a list of strings to be searched,
a list of lists of offsets is returned, with some of the lists possibly empty if no
matches were made. There are no size limits on the parameters other than
available memory.

Acme Script Widgets 2.5.1 19 1 October 1995

Tokenize
Tokenize was designed to make it easier to split text into elements based on a
set of delimiters. The demo AppleScript™ illustrates several novel uses for
Tokenize which may not be obvious at first glance.

USAGE:

tokenize: split text into a list of items based on list of delimiters.

tokenize string -- the string to tokenize.
with delimiters anything -- the delimiter string(s).
[null tokens boolean] -- return null tokens (default is true, return them)

Result: list -- list of token strings.

the direct parameter to tokenize is a string, and the second (required)
parameter is a list of strings (each string being one or more bytes in length) to
use in tokenizing the direct parameter.

If you are only tokenizing with one delimiter you need not pass it as a list
since AppleScript™ will handle the coercion for you. For example, the
following is legal:

tokenize "My Name Is" with delimiters " Name "
=> {"My", "Is"}

Returning null tokens (the optional parameter) means where two or more
delimiters are found next to one another, an empty string will be returned
indicating there was no token in that location. For example:

tokenize “http://www.acme.com/” with delimiters “/”
=>{"http:", "", "www.acme.com", ""}

The second and last items in the result are null tokens. In the first case,
Tokenize found two delimiters next to each other, but nothing between them;
in the second case no token was found after the delimiter. If you do not want
null tokens returned, specify “without null tokens” when calling Tokenize.

Acme Script Widgets 2.5.1 20 1 October 1995

Tokenize (cont.)

 Some text processing tasks require more than one call to Tokenize to perform.
For example, if the variable myText contained a number of lines separated by
return characters, and you wanted to retrieve the words from line five, you
could write the following AppleScript™ commands:

tokenize myText with delimiters {return}
tokenize (item 5 of result) with delimiters {space}

=> [result is a list with all the words from line five of the text]

What are tokens? Tokens can be anything which has some particular meaning
within a context. The words in this sentence can be considered tokens. Each
word has some meaning in the English language. The spaces between the
words have no special meaning (for this discussion) except to delimit where
the tokens start and stop. If the first sentence of this paragraph is run through
Tokenize with a delimiter list consisting of a single space character, and the
punctuation mark "?", it would return a list of three items (words): {"What",
"are", "tokens"}. This is the process of tokenization.

Here's what that would look like in AppleScript™:

tokenize "What are tokens?" with delimiters {space, "?"}
=> {"What", "are", "tokens"}

Tokenize lets you specify which patterns to use as token delimiters, then it
searches through a piece of text pulling out all the sequences of characters
found between the specified tokens. ("space" is an AppleScript™ constant
which translates to the space character [' ' or ASCII 32]).

Acme Script Widgets 2.5.1 21 1 October 1995

Trim
Trim implements a common text processing command for removing
characters or strings from the ends of a block of text. Acme Replace will also
remove characters by searching for them and replacing them with nothing,
but often times only characters need to be removed from the start of a line or
piece of text, or alternately from the end. Using Trim simplifies this process.

USAGE:

trim: trim patterns of text off the ends of strings.

trim [anything] -- the patterns to trim. (string or list)
off anything -- the items to trim.
[from front side/back side/both sides] -- location to trim from.
[ignoring anything] -- string(s) to ignore.

Result: anything -- the trimmed text.

Trim accepts a string or list of strings to be trimmed, a string or list of strings
specifying what to trim, and optionally lets you specify where to trim from
(from the front, back or both sides of the strings), and which pattern(s) should
be ignored (a string or list of strings).

There are no size limits on the size of the parameters (except for available
memory). If no items are specified for trimming, Trim defaults to removing
spaces from only the end of the text items, ignoring nothing. Likewise, if the
from parameter is not specified, only the end of the string(s) will be trimmed.

To summarize Trim's defaults, only the second parameter is required (the
items to trim), and Trim will remove single spaces from only the end of the
strings, ignoring nothing.

EXAMPLES:

Trim {space} off " On a clear day you can see forever... "
 => " On a clear day you can see forever..."

The extra spaces are removed from the end of the string. If however, the string
ends with a return character, then we should use the following form:

Acme Script Widgets 2.5.1 22 1 October 1995

Trim (cont.)

Trim {space} off " On a clear day you can see forever... " & return
 => " On a clear day you can see forever...\r" -- "\r" is the return character

The spaces at the front of the string are left alone because default is to only
trim from the end of the string. To also remove leading spaces, use the
following command:

Trim {space} off " On a clear day you can see forever... " & return from both sides
 => "On a clear day you can see forever...\r" ---- "\r" is the return character

The “ignoring” parameter provides a powerful feature most other
implementations of Trim do not support. It forces Trim to keep searching for
the patterns to trim even though other patterns might be in the way.

The results of specifying the same pattern as a trim argument and also an
ignoring argument is undefined.

Acme Script Widgets 2.5.1 23 1 October 1995

ACME Parse Args
ACME Lookup Field

ACME Parse Args and Lookup Field are a pair of commands only useful to
people writing WWW server CGIs (as this documentation was being prepared,
StarNine Technologies’ WebSTAR product is the only shipping Macintosh
web server). A certain level of familiarity in writing CGIs is assumed for the
purposes of explaining the usage. For tutorials or further information on
writing WebSTAR CGIs in AppleScript, check Jon Wiederspan’s web site at
http://www.comvista.com/, or StarNine’s web site at
http://www.starnine.com/.

ACME Parse Args and Field Lookup handle the tedious task of converting and
parsing the arguments passed to a CGI script. The Parse command converts all
“+” characters to a space, and translates sequences of %XX (where XX are hex
digits) to the proper character. Additionally, Parse will combine the values for
all duplicate field names into a single list.

The ACME Lookup Field command provides a very fast way to access specific
field values in the parsed argument list.

USAGE:

ACME parse args string -- The post arguments.
[duplicates combined boolean] -- Combine values of duplicate field

labels into a list.
[case sensitive/insensitive] -- Perform case sensitive search?

(default is sensitive; i.e., case matters).

Result: list -- List of parsed CGI arguments as field/value pair lists.

ACME lookup field string -- Field name to lookup.
in list of list -- Parsed CGI arguments.
[default value anything] -- The value to return if the label isn’t

found or the value is empty.
[case sensitive/insensitive] -- Perform case sensitive search?

(default is sensitive; i.e., case matters).

Result: anything -- Value(s) of field.

Acme Script Widgets 2.5.1 24 1 October 1995

http://www.comvista.com/
http://www.starnine.com/

ACME Parse Args
ACME Lookup Field (cont.)

When a CGI or ACGI is called to process an html form, the script is passed the
values the user entered on the form in the post_args variable (this is specific
to WebSTAR). The data is encoded by translating certain special characters to
the pattern %XX, where XX is a hexadecimal number representing the ASCII
value of the character, by converting spaces to either “+” or %20 (depending
on the browser), and combining all the field names and values from the form
into one long string. It could look something like this string:

“name=Jon&age=27&comments=I+take+the+fifth”

Acme Parse Args decodes the input and groups the field names and values
together.

Acme Parse Args post_args -- post_args contains form data...
=> { {“name”, “Jon”}, {“age”, “27”}, {“comments”, “I take the fifth”} }

Once the input data has been decoded and parsed, you can step through each of
the inner lists and process the data, or get the value for a specific field by
calling Acme Lookup Field. To get the value the user entered in the “age”
field, make the following call:

Acme lookup field “age” in theParsedData
=> “27”

Acme Script Widgets 2.5.1 25 1 October 1995

ACME Parse Args
ACME Lookup Field (cont.)

Combining duplicate fields

It’s legal to use the same name for more than one field on an html form, and
Acme Parse Args has special features which let you decide how you want the
values returned when there are duplicate field names. If you specify the
option “duplicates combined true”, all values from duplicate label names are
grouped together in a list. Using the example above but with the addition of
an extra name input field:

“name=Jon&name=Johnson&age=27&comments=I+take+the+fifth”

Acme Parse Args post_args with duplicates combined -- post_args contains form data...
=> { {“name”, {“Jon”, “Johnson”}} , {“age”, “27”}, {“comments”, “I take

the fifth”} }

Without the duplicates combined parameter, the result would look instead
like this:

Acme Parse Args post_args with duplicates combined -- post_args contains form data...
=> { {“name”, “Jon”}, {“name”,“Johnson”} ,{“age”, “27”}, {“comments”,

“I take the fifth”} }

Case sensitive/insensitive

When matching label names in either the parse phase, or the lookup phase,
case is normally not considered unless you specify the “case sensitive”
parameter.

Using Acme Lookup Field

As an alternative to stepping through each of the label/value lists returned
from Acme Parse Args, you can quickly get the value of a specific field by
passing that field name to Acme Lookup Field (ALF). ALF will return either a
single value, or a list of values if 1) there were duplicate field names on the
form and, 2) you specified that duplicates should be combined in the same list
when parsing the input data.

Acme Script Widgets 2.5.1 26 1 October 1995

Acme Sort
Sort a list of items into ascending or descending order, or sort a list of lists
using any one of the items in the inner lists as a sort key. Honors AppleScript
native data types for text, integers, floating points numbers, and dates.

USAGE:

ACME sort list of anything -- List of things to sort.
[by item number small integer] -- 1-based index of item to sort

on (1 is default)
[into ascending order/descending order] -- sort order. Ascending is default.

Result: list -- sorted list

Acme sort can sort either a simple list of items or a list of lists of other items.
It’s very flexible in allowing different sized lists to be sorted or different data
types.

When sorting a list of lists as in {{"Florida", "Georgia", "Texas"}, {"Alaska",
"Washington", "Hawaii"}, {"Montana", "Wisconsin", "Nevada", "Arizona"}},
the lists are sorted relative to one another based on the sort key you specify—
but each inner list is not sorted at the same time, you must perform this
explicitly in separate steps (see the Acme sort demo script for an example of
sorting the inner lists first). By default, each list is sorted using the first item as
the sort key. Using the example list of lists of states above, the second list
would be sorted first in the output since “Alaska” sorts before “Florida” and
“Montana” (assuming you are sorting into ascending order). To specify a
different element as the sort key, use the optional parameter “by item number
X” where “X” is the 1-based index of the sort key.

Acme sort can sort lists of lists even when the inner lists contain a different
number of elements. In this case, if the sort key specified can not be found for a
list, it will sort in front of all the others, as in:

ACME sort {{"Sunday", "wednesday"}, {"Tuesday"}} by item number 2
=>{{"Tuesday"}, {"Sunday", "wednesday"}}

The second lists was moved to the front in the output because there did not
exist an item in the list whose index was 2.

Acme Script Widgets 2.5.1 27 1 October 1995

Acme Sort (cont.)

Acme sort will maintain the data type of list elements whenever it can,
however comparing mixed data types (such as strings and integers) is
accomplished by coercing the elements to strings. Look at the following
example:

ACME sort {"foo", 5, "bar", "1"}

the second element in the list is the number 5, but the last element is a string
representing the number 1. Acme sort will coerce the 5 to a string for the
purpose of comparing it to the other elements, however the resulting list will
still contain the actual integer 5, and not the string representing 5 (“5”). Since
the ASCII characters representing integers sort have lower values then the
Alpha characters, the numbers will sort ahead of the strings in the list above.
The results of that sort look like this:

{"1", 5, "bar", "foo"}

The 5 retained its data type of integer, but the numbers sorted into correct
order, and in front of the alpha strings.

Here’s a slightly more confusing example.

ACME sort {455,"454e", 600}
=> returns the error “Can’t make some data into the expected type”

ACME sort {"454e", 455, 600}
=>{"454e", 455, 600}

Using the same list, but with the items in a different ordering, the first
example returns an error, while the second returns a result. In this case, Acme
sort is using the data type of the first sort key and trying to coerce the other
keys to that type. Since “454e” cannot be coerced to an integer, and error is
returned. In the second case, the first key is a string, and all the other elements
in the list successfully coerce to a string.

If you will be sorting lists using mixed data types, you may want to run a few
experiments with sample data to verify exactly how the mixed types will sort
relative to one another.

Acme Script Widgets 2.5.1 28 1 October 1995

Legal Stuff

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS" AND WITHOUT
WARRANTIES AS TO PERFORMANCE OR MERCHANTABILITY. THIS PROGRAM IS SOLD
WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES WHATSOEVER. BECAUSE OF THE
DIVERSITY OF CONDITIONS AND HARDWARE UNDER WHICH THIS PROGRAM MAY
BE USED, NO WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS OFFERED. THE
USER MUST ASSUME THE ENTIRE RISK OF USING THE PROGRAM. ANY LIABILITY OF
SELLER OR AUTHOR WILL BE LIMITED EXCLUSIVELY TO REPLACEMENT OR REFUND
OF THE PURCHASE PRICE.

Government End Users: If you are acquiring the Software on behalf of any unit or agency of the
United States Government, the following provisions apply. The Government agrees:

(i) if the Software is supplied to the Department of Defense (DoD), the Software is classified as
"Commercial Computer Software" and the Government is acquiring only "restricted rights" in
the Software, and its documentation as that term is defined in Clause 252.227-7013(c)(1) of the
DFARS;

 and (ii) if the Software is supplied to any unit or agency of the United States Government
other than DoD, the Government's rights in the Software, and its documentation will be as
defined in Clause 52.227-19(c)(2) of the FAR or, in the case of NASA, in Clause 18-52.227-86(d)
of the NASA Supplement to the FAR.

Acme Script Widgets 2.5.1 29 1 October 1995

Acme Technologies

Acme Technologies builds innovative tools for AppleScript
and Internet servers. We are also available on a contract basis
to design and implement custom scripting tools, or to help
your engineers support AppleEvents in your products. Write
for further information and rates.

Thank you for supporting Acme products!

Acme@kagi.com

Acme Script Widgets 2.5.1 30 1 October 1995

	Introduction
	Purchasing Info
	Why Use Scripting Additions?
	Customer Comments
	ASW Overview
	ASW QuickGuide
	Documentation
	Change History
	Installation
	Replace
	Change Case
	Combine Lists
	Join List
	Offset in List
	Offsets Of
	Tokenize
	Trim
	Acme Parse Args/Lookup Field
	Acme Sort

	Legal Stuff
	About Acme Technologies

